
Star Cluster Phase Mixing in a Milky
Way-like Background Potential

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in
ASTRONOMY

Author : Brian T. Cook
Student ID : 1780638
Supervisor : Simon Portegies Zwart
2nd corrector : Anthony Brown

Leiden, The Netherlands, June 25, 2020



Star Cluster Phase Mixing in a Milky
Way-like Background Potential

Brian T. Cook

Leiden Observatory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

June 25, 2020

Abstract

Galaxies form in what is known as a hierarchical process, where smaller galaxies are
accreted by bigger ones. The Milky Way’s growth throughout its formation history
can therefore be attributed to the absorption of smaller galaxies in the Local Group.
During such absorption events, star clusters will be subjected to tidal forces that are,

in some cases, strong enough to smear them out onto kiloparsec scales. As we explore
our home galaxy with immense time-domain surveys like Gaia and LSST, galactic
archaeologists will be looking for galaxy merger artifacts and trying to determine

their origins. In this study, we develop several diagnostics borrowed from the fields
of classical mechanics and statistical physics to better understand the tidal disruption

of star clusters. We then analyze phase space coordinate maps to clarify the cluster
identification process and suggest which instrumental capabilities are desired in

various regions of the Milky Way’s stellar halo. We track the tidal dissolution of star
clusters, finding that standard clustering algorithms require more than phase space

information alone to do so accurately. Stellar absorption during star cluster disk
crossings is found to be a feasible channel for blue straggler production. The basis for

these results is a set of simulations conducted with AMUSE, in which star clusters
consistent with a Milky Way model were evolved for 100 Myr.
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Chapter 1
Introduction

1.1 Structure Growth & Galactic Archaeology

The question of where the Milky Way (MW) comes from, and why it looks the way it
does, starts with quantum fluctuations from the inflationary period shortly after the
Big Bang. This exponential growth model helps explain, among other things, the flat-
ness of the universe and absence of magnetic monopoles. Inflation also provides a
model for understanding how initial anisotropies develop into the complex hierarchi-
cal structure we observe at the present epoch. This, in turn, informs how we think
about the development of galaxies like our own, and how artifacts from their forma-
tion history manifest.

1.1.1 Hierarchical Galaxy Formation Picture

The power spectrum of initial mass fluctuations is roughly an inverse proportionality
relation with size. Often referred to as the Harrison-Zel’dovich spectrum, this model
agrees with an intuitive notion that there should be many more small fluctuations than
large ones. The presence of dark matter and the universe’s changing equation-of-state
complicates this picture. Once the dominant underlying physics has been accounted
for, e.g. the universe becoming effectively transparent during recombination and the
presence of dark matter, the observed power spectrum emerges [4–6].

It can be shown that from this set of mass fluctuations, the large-scale distribution
of matter forms a hierarchy [7]. In N-body simulations, this structure persists on scales
comparable to the Hubble time [8]. Analytic models of gas and dark matter [9], as
well as numerical simulations [10], demonstrate that dark matter haloes merge in a
hierarchical process and provide the gravitational potential needed to form galaxies
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1.1 Structure Growth & Galactic Archaeology 2

(see Figure 1.1). A MW-like stellar halo and appropriate dwarf galaxy population has
been recovered from semianalytic models that follow this prescription [11].

Figure 1.1: A sketch from [1] that illustrates how small dark matter
haloes (at initial time t f ) coalesce into a single, larger halo (at final time
t0). Dwarf galaxies often form in smaller haloes and then accrete onto
nearby galaxies, as was the case with the MW [2].

1.1.2 Tracing Galactic Substructures with Stellar Streams

Analyses of the Local Group (network of galaxies comprised of two main ones, M31
and the MW, along with many satellite galaxies) show that our home galaxy was con-
structed in a hierarchical process of this kind, and there are a number of ways in which
artifacts from these mergers can be identified. It is estimated that ∼ 10% of the sky
would be covered with tidal debris if the MW accreted a few hundred globular cluster-
sized objects during its formation history [12].

In some cases there is a ”tidal tail” that can still be found near its progenitor [13], a
famous example being the Small Magellanic Cloud and Magellanic Stream [14]. Some
debris structures can be recovered in six-dimensional phase space w ≡ (x, v) long after
complete tidal disruption and the structure spans tens of degrees along the sky. These
objects, often called stellar streams, can tell us about the global [15] and local [16, 17]
features of the dark matter halo. A spur in the GD-1 stream, for example, has been
found using Gaia data [18] that could reasonably be explained by an interaction with a
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1.2 The Milky Way 3

dark matter subhalo [19]. Given that stellar streams are powerful tools for understand-
ing the formation of our galaxy, it is important to understand the factors that affect
their morphologies. Our study tries to understand the effect of galactic tidal forces and
cluster-cluster interactions on these structures in phase space coordinates.

1.2 The Milky Way

Our home galaxy is perhaps the most familiar object in the night sky, but our location
within it makes certain analyses (especially pertaining to the optically thick regions)
difficult. Generally speaking, the MW is a spiral galaxy [20] with a ”bar” passing
through its nucleus [21]. Star clusters and their subsequent evolution can inform near-
field cosmologists about how the Local Group environment affected MW growth and
development, so an introduction of important features relevant to this work is war-
ranted.

Figure 1.2: The Milky Way, as observed by the Gaia mission. Galactic
archaeologists use time-domain surveys of this kind to analyze stellar
populations and galactic substructures, such that the formation history
of our home galaxy can be better understood [3]. Image credit: ESA/-
Gaia/DPAC, CC BY-SA 3.0 IGO

1.2.1 Haloes and Other MW Features

The geometry of the MW’s various components motivates our choice of a background
gravitational potential in which our simulated star clusters evolve. Attributes relevant
to this discussion (listed in terms of relevance for this study) are the dark matter halo,
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1.2 The Milky Way 4

the diffuse stellar halo, the galactic center (bar + inactive nucleus), and galactic disk
(most notably the spiral arms).

Analytic modelling of dark matter haloes is well established [22], including the
notable NFW profile [23]:

ρ(r)
ρcrit

=
δc

(r/rs) (1 + (r/rs))
2 , (1.1)

where rs is a characteristic scale radius, δc is a tunable model parameter, and ρcrit

is the critical density of our universe. This model assumes spherical symmetry; a sub-
set of Sloan Digital Sky Survey (SDSS) data has been used to challenge the efficacy of
this model in MW contexts [24]. With MW star number densities and velocity disper-
sions derived from mock stellar populations, the Jeans equations [25] demonstrate that
the gravitational potential of the MW is most appropriately modelled with an oblate
dark matter halo [26]. This type of analysis provides yet another motivation for using
phase space coordinates (albeit indirectly) to constrain the geometry of gravitational
potentials using large surveys; this will be the focus of the following section.

Globular clusters and stellar streams primarily reside outside of the galactic plane,
in what is known as the stellar halo. SDSS data suggests that the MW’s stellar halo
is consistent with simulations in which the entire halo is built up with satellite galaxy
tidal debris [27]. A recent study using Gaia data found that the total mass of the stellar
halo is∼ 1.5× 109 M� (∼ 10−3 of the total mass, [28]) and is most accurately explained
by a single dwarf galaxy progenitor [29].

The galactic center, which is opaque at several wavelengths (partially demonstrated
in Figure 1.2), has several features that act as higher-order corrections to our proposed
background potential. At the center of the MW is Sgr A?, a supermassive black hole
whose mass is constrained by observations of nearby orbiting stars [30]. The galactic
bulge has a mass comparable to the stellar halo and has a density profile that is mostly
flat except at the innermost distances from the center [31]. The peanut-shaped galactic
bar is also important for the purposes of analyzing tidal debris morphologies, as is the
case with the Pal 5 and Ophiuchus streams [32, 33]. Lastly, important updates to our
understanding of the galactic disk are expected in the near future thanks to the Gaia
mission [34].
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1.3 Simulation-to-Observation Comparisons 5

1.2.2 Star Clusters Before and After Tidal Disruption

There are two general classes of star clusters relevant to galactic astronomy, and they
are partitioned by age, mass, and virial radius. Clusters younger than a few galaxy
crossing times (∼ 100 Myr) are often called open clusters or young massive clusters;
initial stellar mass function and stellar dynamics studies are often dependent on these
dynamical environments [35]. For more than fifty years, the standard for modelling
star clusters has been the King model [36, 37], which uses a single parameter W0 reflec-
tive of the cluster core’s potential well depth, to generate a phase space distribution of
member stars. Younger clusters have a halo that is well-approximated by a power law
[38–40]; thus, we recognize that applying a King model to open cluster simulations is
a simplification.

Globular clusters are tightly bound groups of very old stars wherein all gas and
dust has been evacuated. A common sentiment is that globular clusters are simply
massive clusters that survived for a considerable fraction of the Hubble time. There are
about 150 known MW globular clusters [41] with varying stellar populations. About
one quarter of these globular clusters were accreted from nearby galaxies, while the
rest were created in situ [42]. One method of identifying globular clusters is by ap-
plying clustering algorithms to catalogs of RR Lyrae variable stars, a class of stars as-
sociated with globular clusters that are often used as standard candles in near-field
cosmology [43].

In cases where the star cluster is tidally disrupted, as discussed in §1.1.2, a stellar
stream is the end product. Omega Centauri, the most massive MW globular clus-
ter, is the remnant of an accreted dwarf galaxy [44]; it provides a helpful example of
how merger artifacts can still be identified with the progenitor object. The Fimbulthul
stream, which extends 28◦ away from ω Cen, is its tidal tail [45]. The Pal 5 stream
can be traced using RR Lyrae variable stars [46], and is yet another direct connection
between globular clusters and stellar streams. Our goal is to help illuminate the evo-
lution of star clusters as they are contorted by external forces, both from nearby star
clusters and the background gravitational potential provided by all other components
of the Milky Way.

1.3 Simulation-to-Observation Comparisons

It is critical that the simulations described in §2 (and anywhere, really) inform us about
how nature works in some sense. If not for having an eye towards the real world,
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1.4 Motivations and Brief Overview 6

this entire project would be little more than an intellectual exercise. In the context
of our study, we must ensure that the initial star cluster phase space coordinates are
reflective of what has been observed in the MW. When done properly, we can then
make inferences about interacting star clusters using our simulated data set. After all,
this is considerably easier than cultivating a comprehensive data set of all MW stars
that were born in star clusters or external dwarf galaxies.

A key component of galactic dynamics is constructing the distribution function
f (w), which serves as a probability density of particles in phase space [47]:

N? =
∫

dw f (w), (1.2)

ν(x) =
∫

dv f (x, v), (1.3)

where ν(x) is the spatial number density. There are few analytic expressions avail-
able for the distribution function; an ideal gas can be described using the Maxwell-
Boltzmann distribution, but something more sophisticated is usually required in galac-
tic contexts. The distribution function of any closed system must satisfy the collisionless
Boltzmann equation (i.e., conservation of number of stars),

0 = ∂t f + ẇ ∂w f , (1.4)

and match observables like the brightness profile and rotation curve. We will focus
on orbit-based methods, in which a library of orbits is created using simulations of
particles moving through a fixed potential [48, 49]. This can be done by minimizing
a χ2 statistic based on the distribution of orbit weights or with a ”made-to-measure”
N-body system that is guided towards matching the desired observed attributes while
adjusting orbit weights. We employ the galpy Python package [50] to generate a set
of star clusters consistent with the MW distribution function; this will be discussed in
more detail in §2.

1.4 Motivations and Brief Overview

A recent paper demonstrated that in order to understand how star clusters evolve via
tidal disruption, capturing the effect of interactions with nearby star clusters is critical
[51]. While our approach is very similar, we want to provide further context using the
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1.4 Motivations and Brief Overview 7

language of phase mixing. This approach has been successfully applied in determining
the velocity distribution of a “popped” star cluster in a Milky Way-like environment
[52]. Observables borrowed from statistical physics will depend on external factors like
background potential and number of other star clusters in the system; it is important
to establish cause-and-effect relations here. We can use our labelled data to understand
star cluster mass loss and stellar exchange between star clusters and the field. Cluster-
ing algorithms are an established approach to finding related stars [53]; however, we
find that phase space information alone is insufficient for this type of analysis across
simulation snapshots.

In §2, we discuss the computational techniques used to cultivate a suitable data set
for the analysis of star cluster phase mixing. The language borrowed from the field of
statistical physics used in this study is introduced in §3; we present certain quantities
like phase space density and entropy, and how they are affected by varying the galactic
model. Stars are not usually equipped with tracers that tell us unambiguously the
progenitor from which they came, but in §4 we use our labelled data to understand star
cluster mass loss and stellar exchange. The remaining chapters provide a discussion
of our findings, as well as a few examples of how we could use these results in future
work.
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Chapter 2
Synthetic Data from Simulations

2.1 Gravity Solvers in AMUSE

Most of the source code written for this project operates within the AMUSE environ-
ment [54–57]. AMUSE is a flexible Python wrapper that combines the functionality
of codes written in lower-level languages like C/C++ and Fortran. The following as-
trophysical phenomena can be incorporated into a user’s source code: gravitational
dynamics, hydrodynamics, stellar evolution, and radiative transfer. Our focus will be
on gravitation and stellar evolution; star clusters are often too volatile to contain much
gas, and radiative transfer is a higher-order correction in this context that does not jus-
tify the associated computational expense. We use SeBa for stellar evolution, which
assumes solar metallicity and updates the mass-radius relation of each star according
to the various tracks within the stellar life cycle [58].

2.1.1 N-body and Barnes-Hut Octtree Simulations

The N-body problem is a helpful toy model often used in mechanics and computa-
tional physics courses, in which N massive particles interact gravitationally. The equa-
tion of motion for the ith particle with mass mi and position xi is a nonlinear, second-
order differential equation:

mi ẍi(t) = Fi(t) = ∑
i 6=j

Gmimj

|xj(t)− xi(t)|3
(
xj(t)− xi(t)

)
, (2.1)

where the sum goes over all other particles. An analytic solution for xi(t) is only
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2.1 Gravity Solvers in AMUSE 9

available for N ≤ 3. If the initial conditions of all particles {wi(t = 0)} are known,
however, then equation (2.1) can be solved iteratively. Approximations must be made,
as we cannot compute the momentum and position via direct integration. One rudi-
mentary approach is computing the force, and then updating the velocity/position
vectors appropriately for each particle at time steps separated by an interval ∆t:

ẋi(t + ∆t)← ẋi(t) +
1

mi
Fi × ∆t, (2.2)

xi(t + ∆t)← xi(t) + ẋi(t)× ∆t. (2.3)

This method’s utility is dependent on the choice of ∆t, and the total energy of the
system is not conserved. One way to mitigate this problem is with symplectic integra-
tion, which preserves the phase space volume of the system. By interleaving updates
to the position and velocity vectors, each iteration serves as a combination of predictor
and corrector. We use the AMUSE gravity solver Hermite [59]; while not a symplectic
integrator, it is close enough such that it can be employed here.

The direct N-body algorithm usually has a computational complexity O(N2), which
becomes unacceptably slow in the limit of large N. A clever improvement, called the
Barnes-Hut octree [60], achieves O(N log2 N). This is done by constructing a tree-like
data structure where the root node is the entire d-dimensional simulation volume; if
a particular branch has more particles than a dictated threshold, it is divided into 2d

subbranches (see Figure 2.1).

Figure 2.1: A 2-dimensional quadtree (see James Demmel’s
lecture notes https://people.eecs.berkeley.edu/~demmel/cs267/

lecture26/lecture26.html) in which the maximum number of par-
ticles in a leaf node is 1.

Once the tree is created, the force on each particle is computed. The mass multipole
moment of each leaf node is determined, and if θ ≡ `box/|xi − xbox COM| is less than

Version of June 25, 2020– Created June 25, 2020 - 14:37

9

https://people.eecs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html
https://people.eecs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html


2.1 Gravity Solvers in AMUSE 10

a user-prescribed value, then the multipole moment approximation is employed for
that box. If we wanted to explore MW dynamics that incorporate the rest of the Local
Group with an octree, for example, M31 satellite galaxies would probably be treated
as point particles. Our codes use BHTree, an implementation of the octree formalism
compatible with AMUSE.

2.1.2 Bridging Gravity Solvers with the Background Potential

In reality, equation (2.1) is incomplete. While it would be appropriate if we were only
concerned with the gravitational interaction between stars, the gravitational poten-
tial provided by the MW must be incorporated if our results are to be compared with
observations. A helpful description of how this bridging is handled in AMUSE is pro-
vided in [54, 61], and we repeat a few of the key points here. The dynamical state of a
particular particle g(t) evolves in time using the Poisson bracket and the Hamiltonian:

dg
dt

= {g, H}, (2.4)

≡ DH g. (2.5)

If the Hamiltonian is separable, i.e. H = Hint + Hext, the time evolution can be
written with an operator approximated to Kth-order:

g(t + δt) = exp (δtDH) g(t), (2.6)

'
[

K

∏
i=1

exp (aiδt DH,int) exp (biδt DH,ext)

]
g(t), (2.7)

where Hint, ext are the Hamiltonians of the sub worker system and parent worker
system, respectively. Equation (2.7) is symplectic, so the phase space volume will be
conserved for the entire system. This can then be used to construct a leapfrog in-
egrator such that the global system (all particles and background potential) and local
system (particle interactions) are evolved in an interleaved fashion. The background
potential is provided by galpy.potential.MWPotential2014, a realistic galactic bulge
model constrained by recent MW kinematic observations. Equipotential surfaces for
this background potential are shown in Figure 2.4 as a function of a scale radius R0.
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2.2 Star Cluster Initial Conditions in Phase Space 11

2.1.3 Nemesis

For 64 star clusters (the largest number considered in this work), N ' 105; the speed
of an octree simulation would beat that of an N-body approach by a factor of ∼ 104.
There is a trade-off, however, with octree accuracy that is encapsulated by the choice
of θmax. If too many boxes are treated with the center-of-mass approximation, then the
force will not be accurate; If θmax = 0 and the number of maximum allowed particles
in each box is 1, then the N-body force computation result is recovered.

An AMUSE-compatible solver called Nemesis [62] is built to combine the accuracy
of N-body codes and the speed of tree codes. This solver is ideally suited for environ-
ments in which many of the particles belong to “subsystems” (i.e., star clusters) while
the rest can be thought of as field particles. The so-called ”parent worker”, which op-
erates on the scales at which field star-cluster and cluster-cluster interactions need to
be taken into account, is BHTree. The ”sub worker”, by contrast, will solve the internal
dynamics of the clusters themselves with Hermite.

The clock time for each gravity solver is shown in Figure 2.2. Each simulation was
done on one 1.6 GHz Intel Core i5 processor. King model star clusters (whose attributes
are provided in Table 2.1) were simulated for three time steps so as to give a brief
indication of the computational expense required for each gravity solver to evolve a
collection of star clusters; see §2.3 for more details on how star clusters were selected
for these simulations.

Nemesis requires more overhead at the manager and communication layers of AMUSE,
as particles are being passed between two separate gravity solvers. These instructions
are in Python, and as a consequence the resulting simulations are significantly slower.
Hermite and BHTree, by comparison, tend to produce results faster as they are written
in C++, a middle-level computing language. The advantage of Nemesis is that the star
clusters can be assigned to different threads and their updates can be communicated
to the central gravity solver appropriately; this advantage becomes more important as
the number of independent subsystems increases. We proceed using the BHTree solver
exclusively in order to mitigate time and computational expense constraints.

2.2 Star Cluster Initial Conditions in Phase Space

A prescribed number of star clusters need to be initialized for each simulation. In each
case, we use a King model with parameter W0 = 1.5. The cluster mass is taken from a
cluster mass function with power law α ' −2 [63]. The number of cluster stars is then
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2.2 Star Cluster Initial Conditions in Phase Space 12
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Figure 2.2: The clock time for each aforementioned gravity solver, in
which log2(Nclusters) from Table 2.1 evolve for three time steps of ∆t =
0.1 Myr.

determined by a collection of Salpeter-distributed stars [64] whose collective mass is
within 1% of the desired cluster mass value. There are publicly available AMUSE
functions that generates particles with these specifications. Before doing so, however,
we must provide a set of physical units to convert from N-body units. The mass unit is
the cluster mass (i.e., sum of the stellar masses within the cluster at initialization) and
the radius unit is defined in the following way:

r(N) = rmax × 10α. (2.8)

where rmax = 10 parsecs and α is a random number between -1.5 and 0. This
ensures that the distribution of star clusters have a density profiles that spans 1.5 orders
of magnitude and that Figure 2.3 is roughly consistent with the open clusters in Figure
2 of [35].

The initial location of each star cluster is taken from a distribution function con-
sistent with the Milky Way [65], such that they are distributed within 1 kpc of the
galactic center. Once the spatial location of each star cluster has been established, we
use the language of action-angle variables in order to get the appropriate velocities
v ≡ vr r̂ + vφφ̂ + vzẑ. [66]. If we assume that the orbits are non-chaotic (i.e., quasi-
periodic), then each action is
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Figure 2.3: The mass-virial radius distribution of the 64 star clusters at
the point of initialization in Table 2.1.

Ji =
1

2π

∮
γi

v · dx, (2.9)

where γi is the torus on which the ith orbit is defined [67]. The conjugate angle θi

has the equation of motion

dθi

dt
≡ Ωi, (2.10)

Ωi = ∂Ji H({Ji}), (2.11)

where H({Ji}) is the Hamiltonian in terms of the set of relevant actions. The galpy

package generates sets of action-angle pairs using the Stäckel approximation [68, 69],
which employs an axisymmetric potential ΦS. This potential is written in terms of a
coordinate system (u, v) connected to our original cylindrical coordinate system (r, z)
via the following generating function:

S(pr, pz, u, v) = pr r(u, v) + pz z(u, v). (2.12)

A quasi-isothermal distribution function can be created from these action-angle
variables [70]:
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2.3 Experimental Setup 14

fz(Jz) =
(Ωz Jz + V2

γ)
−γ

2π
∫ ∞

0 dJz (Ωz Jz + V2
γ)
−γ

, (2.13)

fr(Jr, Lz) = exp
(
−
[

lim
Jr→0

Ωr(Jr, Lz)

]
Jr

σ2
r

)
, (2.14)

where Vγ, γ are empirically-derived constants and σ2
r is the velocity dispersion in

the r-direction. We employ the relevant galpy packages to sample velocities from these
distribution functions and do not change the underlying constants so as to find the
appropriate velocity vector v.

2.3 Experimental Setup

We have a set of seven simulations, where the number of initialized star clusters dou-
bles each time: Nclusters = 1, 2, 4, . . . , 64. After randomly assigning initial conditions to
each star cluster, we sorted the consequent collection by their distance to the galactic
center r. Figure 2.4 shows equally-spaced equipotential surfaces in scaled cylindrical
coordinates where are clusters are being initialized. The potential gradient and conse-
quent tidal forces are strongest at the galactic center, as expected. Our choice of sorting
by proximity to the galactic center was therefore motivated by wanting to determine
if certain observables could be evaluated in relation to their likelihood of being tidally
disrupted.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
R/R0

0.4

0.2

0.0

0.2

0.4

z/
R 0

Figure 2.4: Equipotential surfaces for the background potential pro-
vided by MWPotential2014 and made compatible with AMUSE.
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Figure 2.5: The 64 star clusters in Table 2.1 at t = 0, where each marker
has a size proportional to log10 N? and each arrow indicates the velocity.

The initial conditions of each star cluster are saved such that the first cluster is in
each simulation, the second cluster is in all but one simulation, and so on. The total
mass, number of stars, initial galactocentric distance, and initial speed are shown in the
first few columns of Table 2.1. The dissolution time and final galactocentric radius of
each star cluster (if possible) is computed using the log2 Nclusters = 6 simulation data;
we will discuss the details in §4. Figures 2.5 and 2.6 show the star clusters’ initial phase
space configuration and are color coded by their inclusion in each simulation.

For the remainder of this thesis, we will be using BHTree as the gravity solver for
our simulations. As mentioned earlier, the choice of time step is critical; the change
in energy fraction ((E(t)− E(t = 0)) /E(t = 0)) is indicated in Figure 2.7, showing a
non-intuitive relation between ∆E and ∆t. We simulated the star cluster with index 0
(smallest initial galactocentric distance) for this energy conservation test, so it stands
to reason that this will be a sufficiently small time step for the other clusters. We will
proceed using ∆t = 0.2 Myr.
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Figure 2.6: A zoom-in, face-on view of the star cluster initial conditions
at t = 0, where each marker has a size proportional to log10 N? and
each arrow indicates the velocity in the (x, y) plane.
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Figure 2.7: The fraction of energy gained (or lost) as a function of sim-
ulation time for BHTree simulations using the cluster with index 0 from
Table 2.1 with various choices of time step ∆t. Stellar evolution is not
included in this test, as variable stellar masses will introduce changes
in the way that the gravitational potential energy is computed.
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2.3 Experimental Setup 17

Index Mcluster (M�) N? r0 (kpc) |v0| (km/s) rvir,0 (pc) tdissolve (Myr) r(t = 100 Myr) (kpc)
0 441.62 1096 0.019 183.64 0.62 18 –
1 174.93 300 0.019 255.31 0.40 46 –
2 320.65 742 0.047 101.83 1.56 14 –
3 217.79 484 0.048 190.20 6.94 22 –
4 137.00 325 0.056 136.31 4.66 18 –
5 122.59 345 0.058 102.34 1.76 16 –
6 215.85 540 0.088 200.03 0.37 – 0.217
7 221.67 527 0.133 113.89 0.41 58 –
8 136.36 354 0.138 120.85 3.78 24 –
9 259.29 687 0.141 206.83 1.32 84 –

10 127.97 287 0.141 195.65 0.40 – 0.497
11 101.98 263 0.142 94.88 2.26 34 –
12 739.01 1630 0.143 221.83 0.40 – 0.842
13 119.64 316 0.150 145.88 1.78 44 –
14 270.63 580 0.206 254.24 1.52 94 –
15 120.13 285 0.272 275.87 0.70 – 1.649
16 448.48 947 0.282 191.99 2.93 58 –
17 156.28 281 0.285 116.26 4.56 48 –
18 730.20 1770 0.294 289.60 0.51 – 0.641
19 121.15 263 0.300 93.92 0.43 – 0.292
20 348.38 731 0.320 131.04 1.94 28 –
21 567.75 1439 0.323 233.56 0.33 – 0.973
22 126.55 262 0.352 209.03 1.55 – 0.752
23 156.99 279 0.357 185.78 1.38 76 –
24 149.21 258 0.363 63.38 5.23 58 –
25 354.64 581 0.367 94.41 8.32 – 0.329
26 101.42 242 0.390 199.53 0.52 – 0.900
27 197.34 399 0.394 216.77 1.21 – 0.519
28 155.51 211 0.408 97.04 5.34 52 –
29 108.68 200 0.420 106.97 3.16 58 –
30 3123.57 7970 0.424 256.36 1.12 – 1.555
31 265.84 609 0.460 186.49 5.57 – 0.971
32 1155.14 2795 0.460 158.65 2.84 74 –
33 179.02 294 0.469 117.18 2.43 34 –
34 254.27 510 0.529 154.13 0.33 – 0.163
35 200.36 425 0.533 72.78 2.10 42 –
36 132.41 270 0.541 110.29 0.46 72 –
37 168.35 255 0.541 163.00 3.45 64 –
38 398.27 901 0.543 67.87 4.58 74 –
39 236.74 489 0.546 95.36 0.33 94 –
40 134.41 352 0.551 90.31 4.59 90 –
41 1230.42 2837 0.556 53.75 1.01 – 0.474
42 223.57 440 0.564 166.94 0.71 – 0.902
43 102.78 228 0.579 92.25 1.82 42 –
44 128.26 248 0.583 179.68 2.43 – 1.022
45 264.98 547 0.608 111.06 8.49 60 –
46 101.22 244 0.621 102.11 1.77 46 –
47 119.12 271 0.629 133.76 6.51 – 0.643
48 350.42 852 0.631 202.38 1.95 – 1.320
49 365.73 638 0.655 152.66 2.41 – 0.861
50 224.60 476 0.662 121.86 0.94 – 0.867
51 2383.26 5817 0.708 165.88 8.31 – 0.722
52 192.28 512 0.726 85.22 2.32 54 –
53 151.63 275 0.755 50.97 0.62 82 –
54 129.60 327 0.770 205.76 0.40 – 1.545
55 203.59 419 0.822 54.39 0.51 – 0.514
56 3096.82 7445 0.862 200.21 3.05 – 1.432
57 204.00 475 0.869 144.50 0.56 – 0.819
58 279.87 528 0.898 207.84 0.83 – 1.338
59 265.08 655 0.917 37.91 4.14 62 –
60 126.67 352 0.954 161.17 2.72 72 –
61 7595.06 19945 0.959 45.58 8.66 68 –
62 115.82 258 0.972 215.93 0.89 – 1.088
63 350.33 788 0.982 44.73 0.57 – 0.923

Table 2.1: The 64 star clusters used in our simulations. We select clus-
ters starting at the beginning each time; for example, star cluster with
index 2 is in every log2 Nclusters ≥ 2 simulation.
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Chapter 3
Statistical Properties of Star Clusters in a
Tidal Field

In §1.3, we establish that the distribution function f (w) plays a critical role in the evolu-
tion of dynamical systems. Fokker-Planck (of which the collisionless Boltzmann equa-
tion stated in §1 is a special case) states that the distribution function evolves via the
following stochastic differential equation [71]:

∂t f (w, t) = −∂w
(
µ(w, t) f (w, t)

)
+ ∂2

w
(

D(w, t) f (w, t)
)
, (3.1)

where µ(w, t), D(w, t) are drift and diffusion terms, respectively. The Liouville the-
orem, where the diffusion is equal to zero [72], suggests that the evolution of a classical
system, governed entirely by Hamilton’s equations, must be deterministic [73]. A set
of star clusters moving through the Milky Way is a system whose distribution function
will always obey Fokker-Planck, and may be approximated by Liouville if the diffusion
of the star cluster’s phase space distribution is negligible; this motivates our interest in
computing the distribution function as it evolves so as to confirm the integrity of our
simulations. Several diagnostics, including the dimension [74] and entropy [67], pro-
vide a quantitative measure of each system’s phase mixing. We also explore how these
diagnostics can be used in studies trying to extract star clusters from time-domain sur-
vey data.
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3.1 Manifold Dimension 19

3.1 Manifold Dimension

Phase-mixed structures like star clusters are, in effect, living on a D-dimensional man-
ifold embedded within an N-dimensional space such that D ≤ N. In this context,
N = 6. Observers will often talk about a structure’s dimensionality K, whose value is
determined by the number of observables required to see the projection of the object.
Our focus will be on computing D, the inherent dimension of the star cluster manifold.

3.1.1 Naı̈ve Approach

Each star cluster is effectively a point particle (D = 0) in phase space at the beginning
of each simulation. Any internal motion or displacement from the cluster’s center is
small compared to the initial phase space coordinates it has been assigned. Once the
star cluster becomes tidally disrupted or dissolves entirely, the shape of the manifold
will get more complicated and the dimension may increase. A first-order method of
evaluating the dimension is shown with the pseudocode script dimension.py:

1 def dimensions ( t , c l u s t e r s i n i t , c l u s t e r s t ) :
2

3 ’ ’ ’
4 c r e a t e s a l i s t of dimensions [D0 , D1 , . . . , DN] f o r the N c l u s t e r s

provided as input
5 ’ ’ ’
6

7 d i m e n s i o n l i s t = [ ]
8 c l u s t e r s i n i t : D array conta in ing phase space coordinates a t time t = 0
9 c l u s t e r s t : D array conta in ing phase space coordinates a t time t = t

10

11 def domain (m, c l u s t e r ) :
12 #use 2 standard d e v i a t io n s as bound , avoids o u t l i e r s
13 re turn p e r c e n t i l e ( c l u s t e r [m] , 9 7 . 8 ) − p e r c e n t i l e ( c l s t [m] , 2 . 2 )
14

15 # determine i n i t i a l s i z e of each c l u s t e r in phase space
16 d x s i n i t = [ domain ( x , c l u s t e r ) f o r c l u s t e r in c l u s t e r s i n i t ]
17 . . .
18 d v z s i n i t = [ domain ( vz , c l u s t e r ) f o r c l u s t e r in c l u s t e r s i n i t ]
19

20 f o r j , c l u s t e r in enumerate ( c l u s t e r s t ) :
21

22 D = 0
23 i f domain ( x , c l u s t e r ) > 5 ∗ d x s i n i t [ j ] :
24 D += 1
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3.1 Manifold Dimension 20

25 . . .
26 i f domain ( vz , c l u s t e r ) > 5 ∗ d v z s i n i t [ j ] :
27 D += 1
28 d i m e n s i o n l i s t . append (D)
29

30 re turn d i m e n s i o n l i s t

dimension.py

In order to define the initial structure size, we determine the range of values in each
direction at time t = 0 using 2σ percentiles, such that outliers are avoided. We then
compute the manifold size at time t = t; if a particular direction’s range has grown
to larger than five times the initial value, we posit that the structure’s presence in that
particular direction is no longer negligible.

The cluster’s dimension D, as we have defined it, is the number of directions in
which the structure’s extent has markedly grown since its initialization. This approach
confirms our intuition that as star clusters navigate a strong background gravitational
field and interact with nearby star clusters, the manifolds describing their distribution
in phase space will become more complicated in time. This is especially true for star
clusters whose initial galactocentric distance is on the order of . 20 parsecs. The mani-
fold dimension evolution shown in Figure 3.1 indicates that there is a strong correlation
between galactocentric distance and a maximal manifold dimension at the end of the
simulation.

3.1.2 Principal Component Analysis

It is worth noting that the values computed in §3.1 are not exactly the dimension of the
manifold; a collection of stationary stars forming a straight line in physical space, for
example, would have dimension 1 ≤ D ≤ 3 in our formulation while actually being a
one-dimensional structure in phase space. This motivates our usage of principal com-
ponent analysis as a complementary method of computing each star cluster’s manifold
dimension.

Principal component analysis is a popular data analysis method in which high-
dimensional data can be distilled into components with decreasing amounts of rele-
vance [75]. We can use singular value decomposition for a phase space data matrix
X ∈ RN?×6 such that it can be written in terms of an orthogonal matrix U ∈ RN?×N? , a
diagonal matrix Σ ∈ RN?×6, and another orthogonal matrix V ∈ R6×6:
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Figure 3.1: The manifold dimension D computed using the naı̈ve ap-
proach, where each row corresponds to a star cluster (sorted by initial
distance from the galactic center) and each column represents a snap-
shot in simulation time.

X = UΣVT. (3.2)

The column vectors {v̂i} are the principal components of X, and the associated
diagonal elements σi are defined in the following way:

(
XTX

)
v̂i = σ2

i v̂i. (3.3)

There are six principal components, each with varying amounts of importance in
describing the morphology of the star cluster’s manifold. We apply singular value de-
composition to the phase space data of each star cluster and normalize the variance
explained by each principal component (i.e., ∑i σ̂i = 1). The resulting manifold di-
mension D are the number of principal components whose normalized variances are
greater than or equal to 0.01.

Our method of implementing principal component analysis indicates that an in-
creasing manifold dimension might not be an inherent feature of star cluster evolution
in complicated gravitational fields. Figure 3.2 suggests that as a star cluster evolves,
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Figure 3.2: The manifold dimension D of each star cluster in the
log2 Nclusters = 6 simulation, computed using principal component
analysis.

its dimension is typically reduced. This may correspond to a star cluster being elon-
gated due to tidal forces. Any correlation with initial galactocentric distance is weak,
especially in comparison to our proposed approach of computing the manifold dimen-
sion. This motivates section §4.1, in which we compare phase space maps with final
manifold dimensions 2 (marginal tidal disruption) and 6 (spaghettification).

3.2 Phase Space Densities of Discrete Samples

In order to estimate the distribution function describing the phase space morphology
of the star clusters we have simulated, we must develop a pipeline that takes a set of
phase space coordinates and produces a distribution function at each relevant phase
space coordinate. To start, we constructed an interface such that AMUSE particle sets
could be analyzed with the EnBiD package [76]. EnBiD extracts data from a set of phase
space coordinates by allocating each particle into a k-d tree with user-provided at-
tributes. The output is a phase space density estimate at each phase coordinate of the
given particles; we chose a set of parameters that made kernel-smoothed estimates
based on an adaptive metric. Given that the entire system does not have spherical
symmetry, an adaptive metric appears to be a sensible choice.

While there is an option of providing particle masses, we want to estimate the num-
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3.3 Entropy 23

ber density exclusively, which is equivalent to the distribution function as shown in
Equation (1.2). In order to estimate f (w), we employ an interpolation scheme from the
scipy package. The final data product is then a six-dimensional matrix that gives a
distribution function value at each phase space coordinate within a grid encapsulating
a provided phase space volume.

It would be desirable to construct a distribution function map for the entire MW,
but this approach is far too data-intensive. In order to avoid crowding of sample points
into just a few phase space volume cells, a spatial resolution of ∆x ∼ 10 parsecs and
velocity resolution of ∆v ∼ 1 km/s would be required. If we were to explore a phase
space volume with spatial domains ∈ [−5, 5] kpc and velocity domains ∈ [−300, 300]
km/s, it would require a grid with ∼ 109 elements. If each distribution function value
is a 32-bit floating point number, we would need roughly one terabyte worth of storage
space in order to capture each experiment’s output at a reasonable time interval. As
a solution, we propose treating each cluster separately. Many clusters will occupy a
comparatively small phase space volume, so fewer distribution function values are
needed for a sufficiently high resolution with this scheme. In order to implement this
approach effectively, we normalize the EnBiD phase space densities such that for the
ith cluster occupying the the phase space volume Vi with N stars,

1 =
1
N

∫
Vi

dw fi(w). (3.4)

3.3 Entropy

The differential entropy, written in terms of the distribution function [67], is

S = −
∫

dw f (w) ln f (w). (3.5)

Entropy is often conflated with disorder [77], but in this discussion we will stick to
the former as it is more well-defined. As mentioned in §3.2, we will make the approxi-
mation of partitioning the distribution function by cluster { fi(w)} and integrating over
the relevant phase space volumes {Vi}:
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S ' −
Nclusters

∑
i=1

∫
Vi

dw fi(w) ln fi(w). (3.6)

It is worth noting that the differential entropy, unlike its discrete analog in infor-
mation theory, can be negative∗. Given that this formulation was built in an infor-
mation theoretic fashion, the resulting integral is in units of information bits. A one-
dimensional Gaussian distribution function with variance σ2 = e/2π has a differential
entropy of 1 bit [78]:

f (x) ≡ 1√
e

exp
(
−πx2

e

)
, (3.7)

1 bit =
∫ ∞

−∞
dx f (x) ln f (x). (3.8)

The second law of thermodynamics states that the entropy of an isolated system
never decreases in time, and will stay constant as long as each process is reversible.
A single star orbiting through a smooth potential, for example, fits this criterion; the
equation of motion is well-defined and the system can be reversed to its original state.
Star clusters whose initial position is within the galactic center may very well have
chaotic orbits [79], and the internal stellar dynamics may provide further complica-
tions. We propose that, given the close relationship between the Gibbs entropy and
Shannon entropy, Equation (3.6) is a suitable stand-in for thermodynamic entropy for
our purposes.

These factors motivate our computation of the information entropy as a function of
time and number of initial star clusters. The numerical integration of Equation (3.6)
is achieved using Simpson’s method. By using sample points to construct a set of
interpolating polynomials, an accurate estimate of the integral I(a, b) can be found
[80]:

I(a, b) ≡
∫ b

a
f (x)dx, (3.9)

' h
3

(
f (a) + f (b) + 4

N−1

∑
kodd=1

f (a + kh) + 2
N−2

∑
keven=2

f (a + kh)

)
, (3.10)

∗https://www2.isye.gatech.edu/~yxie77/ece587/Lecture17.pdf
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3.3 Entropy 25

where h is the step size h ≡ ( f (b) − f (a))/N. From this we can set up a six-
dimensional interpolation scheme:

I =
hihjhkh`hmhn

36 ∑
i

∑
j

∑
k

∑
`

∑
m

∑
n

Cijk`mnFijk`mn, (3.11)

where Cijk`mn, Fijk`mn are six-dimensional matrices containing appropriate Simp-
son’s coefficients and integrand values, respectively. Each volume Vi is tessellated into
a grid with 86 elements uniformly spaced in each direction; this ensures that we reduce
the amount of storage space needed by at least two orders of magnitude while com-
puting the entropy. We hope to implement a modular form of this computation within
the AMUSE framework, such that any user can provide their particle set’s phase space
coordinates and get an entropy value in return.

3.3.1 Entropy Temporal Evolution

In trying to understand how the differential entropy evolves with time, we are mea-
suring the diffusion of the distribution function describing each star cluster in phase
space. Tidal disruption is the physical mechanism driving this diffusion. Our subse-
quent expectation is that star clusters with small initial galactocentric distances should
diffuse more than their friends that were born ∼ 1 kpc from the galactic center.

Figures 3.3 and 3.4 confirm this hypothesis quite effectively. Recall that in each
of the simulations (log2 Nclusters = 0, . . . , 6), the included star clusters are sorted by
galactocentric distance. The entropy per star cluster in each simulation is mostly sorted
in Figure 3.3 after just a few crossing times (' 20 Myr), with the lone exception being
the simulation with two star clusters (orange curve). At the end of each simulation,
the entropy per star cluster is spaced in nearly equal intervals, with the exception of a
significant gap between the eight cluster and sixteen cluster simulations.

Figure 3.4 shows the entropy of each star cluster at three snapshots (tsim = 0, 50, 100
Myr), where each column corresponds to the simulation in which the entropy was
evaluated. To get the first data point for the pink curve in Figure 3.3, for example, one
would need the sum of the data points in the first panel’s seventh column and then
divide by Nclusters = 26.

These results provide the basis for using star cluster entropy as a continuous mea-
sure of its tidal disruption. One possibility is using a star cluster entropy S? to define
the demarcation between intact vs. dissolved star clusters; we will visit this idea again
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Figure 3.3: The number of entropy bits per star cluster in each of our
simulations as a function of time.

in §4.2

3.3.2 Interaction Effects

The force felt by each star moving through the Milky Way-like gravitational field is
computed using a bridging scheme; we introduced this concept in §2.1.2. We also in-
clude bridges between the star clusters themselves such that each star’s equation of
motion is dependent on the background potential and every other star in the simula-
tion. It is difficult to assess the connection between inter-cluster interactions and phase
space morphologies analytically, as these simulated systems involve many highly non-
linear equations of motion even before cluster interactions are incorporated.

If the reader were to get out a magnifying glass and have an exceptional talent for
discriminating between different shades of blue, they might be able to make inferences
about the relation between entropy and cluster interactions using Figure 3.4. This does
not seem like a reasonable request, so we repeat the entropies of the eight innermost
star clusters in Figure 3.5. In the first panel, we should expect identical entropies from
one column to the next, as the underlying phase space densities were computed using
the same initializations. There are negligible fluctuations |δS| � |S| between initial
entropies as we go from one simulation to another, which are attributable to slight
variations in the EnBiD density estimation computed from each simulation’s star cata-
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Figure 3.4: The entropy of each star cluster (colored by index in Table
2.1) at three different snapshots. The x-axis indicates the simulation in
which the star cluster’s entropy was evaluated.

log.
In the second and third panels of Figure 3.5, we see that star cluster entropies are

indeed dependent on the number of external star clusters. Rather unexpectedly, how-
ever, only one cluster in this sample (index = 1) has a markedly larger entropy that
is attributable to star cluster interactions (which could be the reason for the orange
curve’s odd behavior in Figure 3.3). The cluster with index = 0, surprisingly, has
a smaller entropy at the end of the simulation in instances where other star clusters
are included. Every other cluster experiences minor changes in final entropy due to
cluster-cluster interactions. The relationship between entropy and star cluster inter-
actions appears to be complex and requires further investigation, preferably with a
suite of simulations in which one star cluster interacts with a spectrum of interloping
passers-by.

3.4 Orbital Fundamental Frequencies

Another method of analyzing a star cluster’s orbital perturbations attributable to cluster-
cluster interactions is by looking at its constituent fundamental frequencies. Studies
have effectively used the relevant periodic motion of MW stars to make inferences
about the size and shape of the MW dark matter halo [81], in addition to demonstrat-
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Figure 3.5: The entropy of star clusters with index ≤ 7 at three snap-
shots in each of the simulations.

ing that axial symmetry-breaking in the MW is due to gravitational interactions with
the Large Magellanic Cloud [82].

In §2.2 we introduce action-angle variables, a set of coordinates found via a canon-
ical transformation that follows the Hamilton-Jacobi equations [66]. The frequency νi

associated with the periodic (although not necessarily closed orbit) motion of the par-
ticle following the ith trajectory (with period τi) can be found via

∆θi =
d

dJi

(
1

2π

∮
γi

v · dx
)
= 1, (3.12)

= νiτi. (3.13)

We use the publicly available superfreq package to compute the fundamental fre-
quencies of a particular star cluster’s constituents [83]. By providing a complex time
series for each of the three Cartesian coordinates xi + iẋi (where the positions are in
kpc and the velocities are in kpc/Myr), the frequencies associated with a star’s peri-
odic motion in each direction can be determined.

Figure 3.6 demonstrates that while there are four primary frequencies for the 300
stars initialized in cluster 1 (see Table 2.1). Discrepancies arise when cluster interac-
tions are incorporated. When cluster 1 evolves with only one other cluster, its fre-
quency distribution are biased towards the first three primary modes (' −0.6, −0.3,
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Figure 3.6: The collection of stellar fundamental frequencies for the star
cluster with index = 1 in Table 2.1 in each of the six simulations in which
that star cluster is included.

0.3 Myr−1). Cluster interactions are perhaps most clear in the ratio of negative-to-
positive frequencies, which ranges from ' 0.4-0.7 depending on the simulation.

This chapter has largely been devoted to using tools from classical mechanics and
statistical physics to show the degree to which a star cluster’s phase space distribution
evolves in a MW-like environment. We have shown that the background tidal field
is the primary driver of distribution function diffusion, and that while cluster-cluster
interactions are a higher-order correction to the phase mixing process, its inclusion is
critical. We now move towards providing a set of instructions to galactic archaeologists
interested in mapping a distribution of MW-like open clusters during tidal disruption
based on the inherent physical properties of the clusters.
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Chapter 4
Phase Space Coordinate Maps and Star
Cluster Evolution

This chapter starts by looking at a subset of our simulated star clusters with all of
the available phase space information. Inferences connected to our earlier discussion
on manifold dimension can be made on underlying patterns in two-dimensional (e.g.,
(vx, vy)) projections. We propose a method of identifying the moment at which disso-
lution occurs for each star cluster, as well as a regimen for identifying the mechanism
that might create so-called blue stragglers, the definition of which we will introduce in
§4.4.

4.1 Mapping Star Clusters in Phase Space

4.1.1 Comparing Apples and Bananas

We should expect a spectrum of star cluster morphologies in phase space as they move
through a background potential. Figure 3.1 buoys the idea that some clusters will
dissolve before a completed crossing time, while others may undergo slight disruption
or remain largely intact throughout the simulation. For the purposes of comparison,
we will call tidally disrupted star clusters “bananas” and intact ones “apples”. Figures
4.1 and 4.3 demonstrate that apples and bananas will initially look the same in phase
space. Typical position spreads are on the order of a few parsecs and velocity spreads
are less than 1 km/s. In the panels corresponding to velocity space projections, we see
an “X” pattern that is related to the internal dynamics of the star cluster; this provides
an important diagnostic in determining tidal disruption.
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Figure 4.1: Cluster 9 at the point of initialization. As is the case with
other space space maps, the velocity spaces have an “X” feature that
arises from preferred angular momentum axes consistent with a King
model.

After 100 Myr in simulation time, our star clusters have earned their fruitful names.
The apple looks more or less the same in phase space (see Figure 4.4); each position/ve-
locity component spread has not changed much, and in strictly position spaces we see
a compact cluster with a symmetric set of small tidal tails. In each velocity space pro-
jection, the “X” pattern is essentially intact, indicating that the internal dynamics of
the cluster have persisted despite interactions with nearby star clusters and the galac-
tic center’s inhomogeneous tidal field. By comparison, our banana star cluster looks
remarkably different after 100 Myr (Figure 4.2). The position spread, as we have de-
fined it, has grown by ∼ 30 and the velocity spread by ∼ 10. The star cluster in the
(x, y) plane looks like stellar streams often discussed in the literature. The stream be-
comes less noticeable in other position spaces; in the (x, z) and (y, z) planes the cluster
blends in with the rest of the galactic bulge. In hybrid position/velocity spaces and
strictly velocity spaces, the “X” pattern is more difficult to discern. The fact that this
feature persists in some sense indicates that internal dynamics are still relevant even
during tidal disruption.

For more phase space maps of individual star clusters at tsim = 0, 50, 100 Myr, go to
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Figure 4.2: Cluster 9 at the end of the simulation. This is an example
of how tidal disruption may only be obvious in certain position space
projections.

https://github.com/BrianTCook/second_project_GCs/tree/master/figures.

4.1.2 Selection Effects

The manifold dimension of tidally disrupted star clusters can be helpful to observers
trying to find stellar streams from large surveys. Figure 4.5 shows three snapshots of
the log2 Nclusters = 6 simulation; in the third panel (at tsim = 100 Myr), the configu-
ration of stars roughly resembles the Milky Way (see Figure 1.2). A number density
proxy calculated using kernel density estimation suggests the center of star clusters on
the periphery of the galactic bulge have higher number densities than the bulge itself.
If we assume that this number density is somehow proportional to an observed sur-
face brightness (e.g., L�/pc2), it becomes apparent that different instruments should
be employed for the galactic bulge and its outer reaches.

Star clusters initialized near the galactic center are more likely to be found if all 6D
phase space information is available, as they will be more diffuse in position/veloc-
ity hybrid spaces (see Figure 4.2), and deviate more from the “X” pattern in velocity
spaces. The relevant instrument will need a larger photometry range as the cluster gets
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Figure 4.3: A phase space map of cluster 62 (see Table 2.1) at the time
of initialization. The phase space bounds µ± 2σ are provided.

more tidally disrupted; an ability to distinguish single stars will be more important in
this context. Image resolution does not have to be as good for bananas as it is for ap-
ples, as the apple’s spatial range is on the order of a square parsec (see Figure 4.4). An
intact open cluster (apple) near the galactic center would span ∼ 10 arcseconds on the
sky.

4.2 Quantifying Tidal Disruption

We can develop an expression for the mass of a particular star cluster as a function of
time starting with the following prescription [84]:

Mcluster(t) = Mcluster(t = 0) + Mevol(t) + Mexchange(t), (4.1)

where Mevol is the mass loss due to stellar evolution and Mexchange is the mass
exchanged with the environment (i.e., stars entering and leaving the cluster). It will be
helpful to define a dimensionless parameter δ:
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Figure 4.4: Cluster 62 at tsim = 100 Myr. When compared to Figure
4.3, it becomes apparent that small tidal tails in position spaces corre-
late with small perturbations in the original position/velocity hybrid
spaces and velocity spaces.

δ(t) ≡
∣∣Mexchange(t)

∣∣
Mcluster(t = 0)

, (4.2)

δ(t) = 1− 1
Mcluster(t = 0)

(Mcluster(t) + Mevol(t)) . (4.3)

Upon inspection, the range of permissible parameter values is δ ∈ [0, 1], depending
on how many stars have left the cluster. The mass loss attributable to stellar evolu-
tion Mevol must be defined with care; after all, the evolution of a dissociated star is
irrelevant. Instead, we define this term in the following way:

Mevol(t) =
N?

∑
i=0

(
Mi(t)−Mi(t = 0)

)
Θ (t− tenter) [1−Θ (t− tleave)] , (4.4)

where the summation iterates over each star in the simulation. The inclusion of
two Heaviside function ensures that a particular star contributes to Mevol after time
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Figure 4.5: Our largest simulation (N? = 76071) at three snapshots in
simulation time. The color scheme was determined using a Gaussian
kernel density estimator and can be thought of as a proxy for stellar
number density in the (y, z) plane.

t = tenter and before time t = tleave; in other words, only stars that have been identified
as part of the cluster at the present time should be considered. This in turn reduces to

Mevol(t) =
N†
?

∑
j=0

Mj(t)−Mj (t = tenter) , (4.5)

' N†
? 〈∆M〉, (4.6)

where N†
? is the number of stars identified as belonging to the cluster at time t and

〈∆M〉 is the average mass loss per star. This definition has the added benefit of being
completely independent of Mexchange. However, this definition is difficult to implement
in practice because we are only saving snapshots of each simulation rather than each

Version of June 25, 2020– Created June 25, 2020 - 14:37

35



4.2 Quantifying Tidal Disruption 36

time step due to storage space limitations. Therefore, we propose making the following
approximation:

δ(t) = 1− Mcluster(t)
Mcluster(t = 0)

(1 + ε(t)) , (4.7)

ε(t) ≡ Mevol(t)
Mcluster(t)

. (4.8)

Now that each term in Equation (4.7) has been adequately defined, we suggest a
definition of the cluster’s dissolution time tdissolve:

δ (t ≥ tdissolve) ≥ 0.9. (4.9)

At all simulation times, ε � 1; thus, the incorporation of stellar evolution has
a marginal effect on the cluster masses, but is important to include for gravitational
dynamics nonetheless. The last two columns in Table 2.1 show the dissolution time
(within 2 Myr) or final galactocentric distance if the cluster has stayed intact through-
out the simulation.
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Figure 4.6: Each star cluster’s δ value as a function of simulation time,
with a line indicating our classification threshold for the cluster’s dis-
ruption by the galactic tidal field.

Figure 4.6 shows the mass loss for each of the star clusters in the log2 Nclusters = 6
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simulation. As expected, the star clusters with the smallest initial galactocentric dis-
tances dissolve comparatively quickly on the order of a crossing time. This result is
consistent with Figure 3.4, in which the innermost clusters have positive differential
entropies. At tsim = 50, 100 Myr, most of the dissolved clusters have a differential
entropy of greater than 5 bits. We propose that, in instances where the differential en-
tropy is easier to compute than the mass loss, a threshold of S? = 5 bits can be used to
indicate cluster dissolution.

We would not blame the reader for wanting something more succinct to describe
the disruption of our star clusters than Figure 4.6. While the figure is useful for con-
necting mass loss to the increase in entropy for specific clusters, we want to estimate
the relationship between mass loss rate and initial galactocentric distance. A nonlinear
least squares fitting to a power law model (see Figure 4.7) yields the following relation:

〈δ̇〉 ' 10b rα
0 , (4.10)

α = −0.516± 0.117, (4.11)

b = −2.275± 0.072. (4.12)
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Figure 4.7: Time-averaged mass exchange rate, normalized with the
initial cluster mass, as a function of initial galactocentric distance.

This can be inverted to show that tdissolve ∝∼ r1/2
0 , which quantitatively demonstrates

that clusters far removed from strong tidal forces survive longer. However, it would be
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ill-advised to suggest there is a strong correlation between the data and this proposed
power law; confounding variables such as cluster size and orbital properties in the
galaxy frame play a significant role in stellar mass exchange as well.

4.3 Progenitor Identification via k-Means and Hierarchi-

cal Clustering

It is a safe assumption that galactic archaeologists would like each star in the Gaia
catalog to have a label telling us the progenitor from which it came. As outlined in
§1.2, attributes like the proper motion and chemical composition can be used to group
stars together in order to identify their origins. The simulations we have carried out
allow us to proceed in this tradition with the knowledge that we can simply check the
labels to ensure that our identification methods are sufficiently accurate.

An ability to identify subsets within a large dataset, in which the subset’s con-
stituent parts are exceptionally similar, is useful both inside and outside of astronomy;
indeed, many of the computational advances relevant to clustering have been made for
document collections and machine learning applications [85]. The field of cluster anal-
ysis is certainly robust ([86] is an exceptional resource), and its intricacies are beyond
the scope of this thesis. We do not suggest that our search for the ideal clustering al-
gorithm is exhaustive; instead, we propose applying a k-means algorithm to our phase
space information and then applying a cutoff such that stars outside of 2× rvir,0 are
thought to have been ejected from the cluster (as we did in §4.2).

Not to be confused with the k-nearest neighbors algorithm, a machine learning tech-
nique in which values are assigned to all points in a particular space based on the k-
nearest data points embedded within it, the k-means algorithm is designed to partition
a set of data into k groupings. This approach is particularly appealing for our purposes
as we know how many clusters should be expected a priori. The algorithm begins by
placing k centroids in the same space in which the data points live; we use the sklearn

package’s k-means++ option in order to generate initial guesses that more efficiently
assure convergence [87]. The simplest version of this algorithm involves three steps
[88]: assignment of each data point to the nearest centroid µj, a computation of the
sum of the square error (SSE),
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SSE =
Nclusters

∑
j=1

Nstars,j

∑
i=1

(xi − µj)
2, (4.13)

and then a centroid update that minimizes the SSE, which is the mean position of
the (unit mass) data points:

µ′j = ∑
xi∈Cj

xi, (4.14)

where Cj is the jth cluster and xi is the position of the ith data point. The algorithm
terminates once these steps are followed and no data points are assigned to a new
cluster. We choose to omit stellar masses so as to avoid biasing our clustering results
towards higher-mass stars. One thing that we cannot approximate, however, is that our
data do not fit into a uniformly tessellated Euclidean space. Instead, we must re-map
every coordinate x ∈ [xmin, xmax] → x′ ∈ [0, 1]. This is achieved with the following
transformation:

x′ =
x− xmin

xmax − xmin
(4.15)
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Figure 4.8: Using star clusters from Table 2.1 at simulation time t = 0
as a testing set, we find that including all phase space information is
only marginally more effective in identifying clusters through k-means
clustering than just spatial information.
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In practice, observers trying to determine appropriate star groupings do not have
all of the phase space information available. At the very least, a two-dimensional
dataset can be readily found (e.g., equatorial coordinates); photometry, proper motion,
and spectroscopy studies can fill in the missing details. Figure 4.8 demonstrates that
most stars are properly attributed to their birth cluster at simulation time t = 0. Al-
though the 3D and 6D distance metrics appear to have similar clustering identification
quality, we will proceed using all phase space information as it does not drastically
increase the computational expense.

However, we find that this is not a suitable way of tracking the mass loss of every
cluster in the log2 Nclusters = 6 simulation. Even when we provide initial centroids to
the algorithm that are located at the previous time step’s cluster centers (something not
readily available to galactic archaeologists), the results erroneously indicate that every
star cluster dissolves within ∼ 10 Myr.

We also attempted to quantify mass loss without stellar labels via a hierarchical
clustering algorithm, with similarly disappointing results. Hierarchical clustering takes
N data points as input and merges points together based on a distance metric until all
of the data are collected into one root node. If we were to make a hierarchical clus-
tering tree of Dutch cities based on geographical distance, for example, Leiden and
Oegstgeest might be allocated to the same branch very early on while Texel and Maas-
tricht are not in the same branch until the root. For our purposes, we collect clusters
from branches at merging heights on the order of a cluster virial radius. Unfortunately,
the clusters that were found contained only the cluster core and only ∼ 50% of the
clusters were found.

Clustering algorithms are certainly relevant for the analysis of star clusters found
in large time-domain surveys, but not in the way we have suggested. This sort of
analysis would be better suited for single-cluster analyses or identifying cluster cores
in the stellar halo that require more focused investigation. We suggest proceeding with
caution in quantitatively measuring attributes like mass loss or stellar exchange at the
scale of ∼ 105 stars and ∼ 2 kpc.

4.4 Blue Stragglers from Cluster-Disk Encounters

The HR diagram, where the y-axis is some measure of stellar luminosity and the x-axis
is its surface temperature, is one of the more important tools at the stellar astrophysi-
cist’s disposal. Indeed, one can learn a great deal about a star’s life cycle just by tracing
its path through the HR diagram. The age of star clusters can be inferred as larger,
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bluer stars within it turn off the main sequence sooner than their smaller and redder
siblings. This characteristic knee-shaped feature within the HR diagram is well-known
to astronomers from the undergraduate level onwards, but some star clusters have
what are known as blue stragglers.

Figure 4.9: The M3 globular cluster’s HR diagram with its blue strag-
glers circled for clarity. Each star’s y-coordinate is its apparent magni-
tude and the x-coordinate is its color.

Sandage published the HR diagram of the M3 globular cluster in the 1950s (see Fig-
ure 4.9), and it contains several blue stragglers [89]. Several mechanisms have been
proposed to explain blue stragglers [90], including stellar collisions [91] and delayed
star formation [92]. Another possibility is the absorption of field stars by passing clus-
ters with different ages.

Figure 4.10 shows how stars dissociate from their birth cluster as a function of time
in the log2 Nclusters = 6 simulation. After one crossing time or so, the innermost field
stars (r ≤ 0.5 kpc) outnumber the cluster stars; by the end of the simulation, they do
so by nearly an order-of-magnitude. The stripping of cluster stars is more subtle in the
outer reaches of our simulated Milky Way-like environment, but there are nearly two
field stars for every cluster star in that region.

The field stars are assembled into structures roughly analogous to a stellar disk
with a halo component by the end of the simulation, as indicated in Figure 4.5. The
following derivation provides an order-of-magnitude estimate for the number of field
stars n expected to interact with an open cluster as the cluster traverses through this
stellar disk. The underlying assumption is that there is a uniform field star number
density within a homogeneous disk. If the cluster enters the disk at an angle φ, the
volume of disk material through which the star cluster (with radius rc) will pass is
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Figure 4.10: The stars still associated with their birth cluster as a func-
tion of time, as well as the number of stars that can now be thought of
as members of the larger stellar disk and halo. We have partitioned the
stars by their birth cluster’s galactocentric distance r.

' πr2
c (tdisk/ cos φ). Combining with the average number density for a particular re-

gion within the disk, we get

n ' N?,region

cos φ

r2
c(

r2
outer − r2

inner
) , (4.16)

where rinner,outer are the disk radii bounding the region in question. We have de-
fined a boundary radius rboundary ≡ 500 pc so that we have an inner and outer disk.
For a cluster with radius rc ' 1 pc (see Figure 2.3 for our motivation) and entry angle
φ = π/4,

ninner ∼ nouter ∼ 10−1. (4.17)

This estimate suggests absorption events are entirely possible, and that a field star
picked up by a passing star cluster could appear as a blue straggler on the cluster’s
HR diagram. Given that M3 has ∼ 50 blue stragglers, it would take ∼100-1000 disk
crossings (and a 100% absorption rate) for a globular cluster to acquire the expected
number of interlopers in this fashion. We suspect that it would take a particular set
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of circumstances (e.g., very small disk entry angles or encountering overdense regions
within the stellar disk/halo) for stellar absorption to be the primary blue straggler
production channel.

Version of June 25, 2020– Created June 25, 2020 - 14:37

43



Chapter 5
Discussion

We have presented a variety of diagnostics and related galactic astronomy results
whose foundation is the phase space information of Milky Way-like open clusters. Our
goal now is to provide a context in which these findings can be understood, as well as
a set of more specific questions related to star cluster phase mixing that we hope to
answer in future work.

5.1 Comparisons to the Literature

5.1.1 Star Cluster Life Expectancy and Distribution Function Diffu-

sion near the Galactic Center

As we might have expected before analyzing the results of our simulations, star clus-
ters that stay away from strong galactic tidal forces should live longer. We have estab-
lished, to first-order, that an open cluster born in the solar neighborhood (r ' 8 kpc,
[93]) can expect to live nearly twenty times longer than the innermost open clusters
we have simulated. A recent paper showed that globular cluster masses are expected
to decay nearly exponentially in strong tidal fields [94], and that the time constant is
strongly dependent on initial galactocentric distance.

Star clusters lose mass through relaxation-driven evaporation and tidal stripping
[95], and while our codes have implicitly accounted for both, we have focused entirely
on discussions of the latter. An existing dissolution time proportionality relation de-
pends on the half-mass relaxation time and crossing time, tdissolve ∝ t0.75

rm t0.25
cross [96]. This

result is not dramatically different from our own, but does provide further evidence
that we should apply Equation (4.10) sparingly. We could have been more precise in
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our analysis by keeping track of how stars dissociated from their birth cluster, either
through internal or external mechanisms. Additionally, we could have used the Ja-
cobi radius rJ , an often-used stand-in for the tidal radius [47], to define the boundary
between cluster star and field star:

rJ = r

(
Mc

3Mgal

)1/3

, (5.1)

where r is the cluster’s galactocentric distance and Mc, Mgal are the cluster and
galactic masses, respectively. The cluster mass could be computed by using the previ-
ous time step’s tidal radius and then updated using the new values of r and Mgal. This
approximation, however, was tangential to our primary focus and we speculate that it
does not substantially affect the quality of our scientific results.

It is not obvious from the outset if we should expect the distribution function of
open clusters to obey a simple continuity equation. The usage of Fokker-Planck codes
is well-established in understanding the evolution of globular clusters via internal re-
laxation mechanisms [97, 98], but the internal dynamics of those clusters are signif-
icantly more complicated. Our findings suggest that, despite comparatively simple
dynamics, open cluster distribution functions diffuse within 1 kpc of the galactic cen-
ter. Equation 3.6 and [99] suggest that this diffusion is tied to entropy increases, which
we have confirmed in §3.3.

5.1.2 Tidal Forces, Collisions, and Mass Exchange as Star Cluster Dis-

ruptors

Galactic nuclei are, in part, built up by the tidal disruption of globular clusters that get
too close to the galactic center [100]. We have shown in Figure 4.10 that the number of
field stars within 500 parsecs of the galactic center far exceeds those that are still grav-
itationally bound to their birth cluster, which is roughly consistent with this nucleus
formation picture.

Recent studies have found that globular cluster stellar populations and morpholo-
gies cannot be fully understood without accounting for cluster interactions [51, 101].
Using N-body simulations, the authors demonstrate that disk globular clusters could
collide and form what ostensibly looks like one system. They speculate that the pri-
mary driver is the gravitational force exerted by the globular clusters themselves, and
call for further study in determining whether or not less-massive disk clusters are ex-
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pected to interact in this fashion. This speculation is partially supported by our find-
ings; while not constrained to orbits within the galactic disk, we posit that intact clus-
ters with initial mass ∼ 103M� evolve as functionally separate subsystems.

5.2 Future Work

Our focus has been on the phase space morphology of a collection of star clusters.
As these clusters undergo tidal disruption, they are in effect progenitors of a stellar
halo. In the introduction, we mention that observations and simulations of the Milky
Way indicate that the stellar halo is built up by accreting smaller objects like globular
clusters and dwarf galaxies. The Andromeda Galaxy, the largest member of the Local
Group, has a metallicity profile in the outer stellar halo consistent with smaller mergers
of this kind [102]. Moving forward, we plan on exploring more specific phenomena
related to the tidal disruption of star clusters and dwarf galaxies. This can be done with
AMUSE simulations and semi-analytic modelling, in addition to data from near-field
cosmological simulations and time-domain surveys like Gaia. In the very near future,
we would like to establish quantitative estimates of how many field stars a Milky Way
globular cluster is expected to absorb along its orbit. More speculative projects include
discerning which planetary systems can survive their host cluster’s tidal disruption,
and how the galactic center’s black hole population is connection to the history of MW
absorption processes.

5.2.1 Field Star Acquisition as a Blue Straggler Production Channel

In §4.4, we discuss an admittedly hand-wavy calculation in which we find that Milky
Way field stars are expected to pass through open clusters. We hope to carry out a
dedicated set of calculations and AMUSE simulations in the coming months that will
answer this question more authoritatively. Our interest in blue stragglers motivates
setting up an environment in which we have an accurate blue main sequence star num-
ber density estimate for the entire Milky Way ecosystem as a function of time. We will
also need representative globular cluster orbits based on kinematic observations at the
present epoch and cross sections based on star cluster physics. The number of field
star blue stragglers can in principle be estimated using pencil-and-paper calculations,
which can then be checked with mock HR diagrams generated using AMUSE.
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5.2.2 Planetary Orbits in Tidally Disrupted Dwarf Galaxy Remnants

It has been demonstrated through simulations that planetary systems can thrive in a
star cluster environment [103]. An extension of the work done in this thesis could be
an exploration of planetary dynamics in dwarf galaxy remnants. The Oort Cloud’s
morphology is affected by the MW tidal field [104]. Additionally, planets have been
stripped from their parent star by MW tidal effects [105] and globular cluster black
holes [106]. Can planets maintain stable (i.e., persist on a timescale comparable to
the Hubble time) orbits in such an environment? If so, which kind? This could be
explored numerically (AMUSE) and analytically (treating the cluster stars and galactic
bulge background as higher-order perturbations [107]).

If a dwarf galaxy’s dark matter subhalo was absorbed by the Milky Way early on
in its formation history, it would stand to reason that any planets living within the as-
sociated tidal debris are old in comparison to our solar system. Coupling its age with
the fact that this hypothetical planetary system would presumably have many neigh-
bors to colonize [108], these exoplanets may be of particular interest to astrobiologists.
Over the next few years, we would like to help bridge the gap between galactic archae-
ology and planetary dynamics in an effort to find stable planets living within globular
clusters and stellar streams.

5.2.3 The Stellar Halo’s Black Hole Population and Its Connections

to the Milky Way’s Formation History

The MW’s galactic center is comprised of the supermassive black hole Sgr A? and there
are millions of nearby (r < 1 pc) stars. The orbits of binary systems have been analyzed
in this environment [109], and we hope to execute this sort of analysis on a larger
scale. With an AMUSE simulation that incorporates gravity and stellar evolution (and
possibly separate semi-analytic models), we propose exploring the fate of stars/BHs in
Milky Way dwarf galaxies as they get accreted into the stellar halo. Although the mass
fraction of black holes in the stellar halo is very small [110], it would be instructive to
determine the fraction of dwarf galaxy BHs that end up in the galactic center and to
what extent mergers could produce observable gravitational waves.
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Chapter 6
Conclusion

It is a remarkably exciting time to be an astronomer focused on our home galaxy and
its origin. The Gaia mission has released data on billions of Milky Way stars, and,
according an April 2020 estimate made by the consortium∗, nearly 3000 subsequent
papers have been published in refereed journals. Petabytes of observational data are
to be collected at the Vera Rubin Observatory in the coming years; many of them will be
put to use in understanding the formation history of the Milky Way†. Long a deterrent
in understanding the galactic center, the optically thick dust between us and the Milky
Way’s nucleus will be transparent to NASA’s Roman Telescope set for deployment in
2025‡.

As the galactic archaeologists sift through the Milky Way’s fossil record, we should
expect groundbreaking discoveries along the way. ΛCDM (dark energy Λ and cold
dark matter) is the prevailing cosmological model, but is much more successful on
scales larger than the Local Group [111]. The missing satellite problem (i.e., insufficient
number of baryons within the gravitational potential well provided by dark matter
subhalos) should be tested in unprecedented ways with this set of survey data. Addi-
tionally, we stand to learn much more about the Milky Way’s gravitational potential
and previously indiscernible features as more galactic substructures are discovered.

We hope that the findings presented in this thesis serve as a small brick in the foun-
dation upon which this new data will be understood. Our starting position was that
the nature of star cluster evolution can be investigated using the language of phase
mixing. In order to test this hypothesis, we conducted a set of AMUSE simulations in
which open clusters consistent with a Milky Way model evolved for several crossing

∗https://www.cosmos.esa.int/web/gaia
†https://www.lsst.org/science/mapping-milky-way
‡https://www.nasa.gov/feature/goddard/2020/a-tale-of-two-telescopes-wfirst-and-hubble
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times.
A spectrum of phase space distortions were discovered at the end of each simula-

tion, where clusters initialized closer to the galactic center were unlikely to survive for
very long. We found that the manifold dimension and differential entropy were use-
ful diagnostics in assessing this spectrum, and that the related distribution functions
diffuse primarily because of external tidal forces. If cluster interactions are to be con-
sidered in this regime, the fundamental frequencies within a star cluster suggest that it
is best to do so at the stellar level.

We were able to answer some astronomy questions using this statistical physics
framework as well. We developed a quantitative description of star cluster tidal dis-
ruption and an estimation of how many field stars should be produced by dissolved
progenitors. The latter could then be used to predict how many stars born in one star
cluster could be absorbed by another. Our simulated star clusters are the same age, but
it stands to reason that real Milky Way field stars with incongruous ages could show
up in star cluster HR diagrams through this absorption mechanism. It is important to
highlight a negative result as well, namely that, when trying to make specific infer-
ences about the nature of star clusters, applying clustering algorithms to galaxy-scale
catalogs should be done with caution. In the coming years, we plan on answering more
questions about the nature of phase-mixed Milky Way star clusters and, in so doing,
help discover our cosmic neighborhood.
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and F. Governato, The Milky Way Tomography with Sloan Digital Sky Survey. V. Mapping the Dark
Matter Halo, 794, 151 (2014).

[27] E. F. Bell, D. B. Zucker, V. Belokurov, S. Sharma, K. V. Johnston, J. S. Bullock, D. W. Hogg, K. Jahnke,
J. T. A. de Jong, T. C. Beers, N. W. Evans, E. K. Grebel, Ž. Ivezić, S. E. Koposov, H.-W. Rix, D. P.
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